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Figure 1: In this work we provide an approach to retrieve complete proxies to broken query object models for the purpose
of object repair. Given (a) a 3D model of a broken query object, (b) prior approaches retrieve inaccurate proxies [Sfikas et al.
2016], (c) using 2D renders alone provides outputs that are geometric dissimilar, and (d) using 3D point clouds only eliminates
discriminative information such as surface color. Our approach combines the advantages of 2D renders and 3D point clouds
to retrieve (e) complete proxies that demonstrate visual and geometric similarity to the original input. (f) Our approach can
be leveraged to generate restorations for objects using automated restoration approaches [Lamb et al. 2019].

ABSTRACT

3D printing offers the opportunity to perform automated restora-
tion of objects to reduce household waste, restore objects of cultural
heritage, and automate repair in medical and manufacturing do-
mains. We present an approach that takes a 3D model of a broken
object and retrieves proxy 3D models of corresponding complete
objects from a library of 3D models, with the goal of using the
complete proxy to repair the broken object. We input multi-view
renders and point cloud representations of the query to neural
networks that output learned visual and geometric feature encod-
ings. Our approach returns complete proxies that are visually and
geometrically similar to the broken query object model by search-
ing for the learned encodings in the complete models library. We
demonstrate results for retrieval of complete proxies for broken
object models with breaks generated synthetically using models
from the ShapeNet dataset, and from publicly available datasets of
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scanned everyday objects and cultural heritage objects. By combin-
ing visual and geometric features, our approach shows consistently
lower Chamfer distance than when either feature is used alone.
Our approach outperforms the existing state-of-the-art method
in retrieval of proxies for broken objects in terms of the Chamfer
distance. The 3D proxies returned by our approach enable under-
standing of object geometry to identify object portions requiring
repair, to incorporate user preferences, and to generate 3D printable
restoration components. Our code to perform broken object model
generation, feature extraction, and object retrieval is available at
https://git.io/JuKad.
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1 INTRODUCTION

3D printing technology facilitates repair of damaged objects to miti-
gate environmental waste, restore cultural heritage objects [Gregor
et al. 2014; Papaioannou et al. 2017], enable rapid repair in remote
locations with limited access to spare parts, and facilitate domain-
specific repair in dentistry, manufacturing, and medicine [Arbace
et al. 2013; Singare et al. 2008]. Traditional restoration of objects has
been largely manual, with users utilizing computer-aided design
tools to create ‘fill-in’ objects using 3D scans of damaged objects.
The manual restoration process is painstaking and requires expert
knowledge of computer-aided design, which falls outside the scope
of the average consumer. Users are most likely to throw out ob-
jects if they are required to generate repair parts by hand. Some
automated approaches avoid 3D printing and provide the user with
assembly instructions to recombine the broken object parts into
a complete object [Mavridis et al. 2015; Zhang et al. 2018]. These
approaches cannot complete the object if parts have been lost or
destroyed. Approaches have been proposed to democratize object
repair using 3D printing by automatically completing the object
structure from a 3D scan of the broken object, and extracting the
restoration as a subtraction [Gregor et al. 2014; Lamb et al. 2019;
Papaioannou et al. 2017; Sipiran 2018]. Some approaches require
that the objects have obvious axes of symmetry and asymmetrical
fractures [Gregor et al. 2014; Papaioannou et al. 2017; Sipiran 2018],
which severely limits the types of objects that can be processed.
The approach of Lamb et al. [2019] requires users to provide a
3D scan of a complete object corresponding to the broken object.
While their approach is more generalizable than symmetry-based
methods, a user may not have ready access to a complete object
scan, especially if the user only had a single instance of the object
that is now broken. Given a broken object model such as the one
shown in Figure 1(a), we provide an approach that automatically
searches in a library of publicly available 3D models for a com-
plete proxy 3D model, as shown in Figure 1(e). The complete proxy
may be used to generate a restoration part for the broken object as
shown in Figure 1(f). Our method reduces the complexity of object
repair, enabling an average user to perform repairs in the field,
restore delicate cultural heritage objects, and mend single-instance
or discontinued objects while reducing material waste.

Current work in automated object model retrieval addresses
searching for complete models in a library given a complete or
incomplete object model as input by encoding the object models
into a shared feature space [Aono and Iwabuchi 2020; Avetisyan
et al. 2019a,b; Esteves et al. 2018; Iwabuchi and Aono 2018; Nie
et al. 2019; Qi et al. 2016; Uy et al. 2020; Wang et al. 2014; Zhu
et al. 2015]. Incomplete object models correspond to representa-
tions that observe a part of the object, such as single view images
and depth maps. Broken objects are more challenging to encode
as they contain an additional fracture surface, as shown in Fig-
ure 1(a), and as a result any encoding must be applied selectively
or be robust enough to mitigate the effect of the fracture. A num-
ber of approaches address the difference between incomplete and
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complete object geometry or appearance by training feature en-
coders directly on incomplete object depth scans [Esteves et al.
2018; Uy et al. 2020; Zhu et al. 2015], incomplete object point clouds
generated from depth scans [Avetisyan et al. 2019a,b], or single
RGB images of incomplete objects [Nie et al. 2019]. Adapting these
methods to the problem considered in our work requires training
with a large dataset of broken object models, which makes them
difficult to rapidly propagate to new objects. To eliminate a training
phase involving incomplete object models, some methods use hand-
crafted features [Funkhouser et al. 2004; Lavoué 2012; Li et al. 2014;
Rock et al. 2015], which lack the accuracy of learned features, while
other approaches use learned feature encoders that are trained on
representations extracted from complete object models, e.g., 3D
representations such as point clouds [Aono and Iwabuchi 2020;
Iwabuchi and Aono 2018; Uy et al. 2020], voxels [Qi et al. 2016;
Wang et al. 2014] or 2D or 2.5D representations such as multi-view
renders [Qi et al. 2016]. These approaches compress the entire set of
representations into a single feature vector, and are likely to encode
the fracture surface into the feature space, thereby introducing a
large mismatch between the broken object and its complete coun-
terpart. To the best of our knowledge, only a single approach, i.e.,
that of Sfikas et al. [2016], performs retrieval of proxies on broken
objects, using models of cultural heritage objects with syntheti-
cally generated breaks. Their approach uses bag of features (BoF)
with handcrafted features, known to provide poor performance in
contrast to machine learned features [Avetisyan et al. 2019a].

In this work, we provide an approach that leverages a combina-
tion of learned visual and geometric features extracted by running
pre-trained neural network encoders on multi-view renders and
point cloud representations of broken object models to perform
retrieval of complete proxy models from a dataset. Querying with
multiple independent renders minimizes the impact of the break
on visual features, as viewpoints that do not observe the fracture
surface on the broken object are mapped closer to similar view-
points of visually comparable complete proxies in feature space.
Encoding multi-view renders separately overcomes the limitations
that methods which integrate a full set of representations into a
single feature vector [Aono and Iwabuchi 2020; Iwabuchi and Aono
2018; Qi et al. 2016; Uy et al. 2020; Wang et al. 2014] encounter
when using broken query object models as input. Using multi-view
renders also incorporates surface texture, which provides a visual
indicator of the fracture surface if the object interior is colored
differently from its surface, as is the case in Figure 1(a). However,
performing retrieval using only visual features may not encode
crucial geometric information, such as geometry on the reverse
side of the object, and may retrieve objects that are geometrically
dissimilar to the broken object, as shown in Figure 1(c). While using
geometric features encodes shape-related information, geometric
features alone disregard discriminative information such as surface
color. They may retrieve objects that belong to a different class
from the broken object or that have a different texture, as shown
Figure 1(d). Our approach combines the strengths of visual and
geometric features to retrieve complete proxies with significantly
closer geometric similarity in terms of Chamfer distance and nor-
mal consistency and a higher mean average precision than using
either feature independently, as demonstrated by our results in
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Section 5. We use VGG16 [Simonyan and Zisserman 2014] to ex-
tract visual features. We evaluate PointNet++ [Qi et al. 2017] and
histograms created from a 3D local feature generator provided by
Choy et al. [2019] to represent geometric features. The complete
proxy object model returned by our approach can be combined
with an automated restoration approach, e.g. the approach of Lamb
et al. [2019], to repair the object, as shown in Figure 1(f), without
requiring the user to scan a corresponding complete object. We
summarize our contributions below.

e We present the first approach to use learned visual and geo-
metric features to retrieve complete proxy object models
using broken models as queries. We show that our approach
outperforms previous work in complete proxy model re-
trieval using broken queries. Our approach does not require
a training phase involving broken objects, and can be ex-
panded to arbitrarily many object classes without re-training.

e We perform extensive evaluation of retrieval in terms of
Chamfer distance, normal consistency, and mean average
precision for class retrieval using synthetically broken ob-
ject models from three datasets—ShapeNet [Chang et al.
2015], A Large Dataset of Scanned Objects [Choi et al. 2016],
and cultural heritage objects from the Hampson Museum
dataset [Payne et al. 2009].

We generate evaluation datasets containing 5,552 broken and
28,832 complete object models spanning 31 common object classes
derived from the ShapeNet [Chang et al. 2015] dataset, 94 broken
and complete object models spanning 7 classes derived from the
dataset of Choi et al. [2016], and 25 broken and 122 complete object
models derived from the Hampson Museum dataset [Payne et al.
2009]. We ensure that each object model is waterproofed and we
apply textures where applicable. We generate breaks synthetically
by subtracting a random spherical or cubical geometric primitive
from the object. Our work outperforms the existing state-of-the-
art method on retrieval of proxies for broken objects [Sfikas et al.
2016] in terms of the Chamfer distance using synthetically broken
objects from ShapeNet, Choi et al. [2016], and the Hampson Mu-
seum dataset. We share our code to replicate our experiments at
https://git.io/JuKad.

2 RELATED WORK

2.1 Retrieval of Complete Proxies for
Complete and Incomplete Objects

Early work in object retrieval uses handcrafted features to retrieve
proxies for input objects whose representations may either be com-
plete, e.g., a full 3D model or a set of multi-view renders spanning
the object, or incomplete, e.g., a single-view depth map or RGB
image, or a partial 3D model. Funkhouser et al. [2004] perform
complete shape retrieval by encoding a partial 3D model as a single
feature that approximates the the Euclidean distance but is faster
to compute. When used with broken models rather than partial
models, approaches that encode the entire query object into a sin-
gle vector will include the broken model’s fracture fracture surface
in the encoding, causing them to return less relevant complete
proxies. Bronstein et al. [2011] provide a complete shape retrieval
method based on bag of features (BoF) that incorporates the con-
text in which features appear by defining each object using feature
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pairs. Litman et al. [2014] take this concept further by grouping
local features and then performing a sparse coding and pooling
operation on these groups to get the final encoding. In the case
of retrieving proxies for incomplete object models, the approach
of Lavoue [2012] uses a BoF approach that encodes regions of in-
complete object models rather than the object as a whole. Johan
et al. [2014] create a hybrid shape descriptor for incomplete object
model matching that includes information about local and global ob-
ject features, and uses particle swarm optimization to intelligently
combine the feature distances. Toldo et al. [2010] create geomet-
ric features that represent segments of a query object and train a
support vector machine to categorize the complete or incomplete
query model without comparing it to the entire object library. Rock
et al. [2015] perform incomplete object retrieval on depth maps
using handcrafted features based on object silhouettes and voxel
representations. Other retrieval approaches use descriptors such as
Reeb graphs [Barra and Biasotti 2013; Biasotti et al. 2008], eigen-
functions [Wang and Lin 2020], and covariance matrices [Tabia and
Laga 2015] for retrieval of proxies from incomplete objects [Barra
and Biasotti 2013; Biasotti et al. 2008; Tabia and Laga 2015] and
complete objects [Tabia and Laga 2015; Wang and Lin 2020].
Recent approaches have used machine learning to extract expres-
sive features for object retrieval and classification or to augment
existing handcrafted features. Many approaches address proxy re-
trieval for complete objects by using 2D convolutional neural net-
works (CNNs) to extract features from multi-view renders [Bai
et al. 2016; Han et al. 2019; He et al. 2018; Jiang et al. 2019; Su et al.
2015], stereographic renders [Yavartanoo et al. 2018], or panoramic
renders [Sfikas et al. 2018; Shi et al. 2015]. These methods integrate
information from multi-view renders into a compressed feature
vector that encodes information from the entire object. If applied
directly to broken object models, the methods are likely to provide
compressed vectors that are dissimilar from those of their coun-
terpart complete objects, limiting reliable retrieval. Work exists
on complete object retrieval using 3D features, including meth-
ods that train 3D CNNs [Fu et al. 2020; Furuya and Ohbuchi 2016;
Qi et al. 2016] and spherical CNNs [Esteves et al. 2018], though
these approaches have historically performed worse than those
based on multi-view rendering [Esteves et al. 2018], and, similar
to multi-view rendering work, may provide encoded vectors for
broken objects that are distinct from their complete counterparts.
In the area of using machine learning to retrieve proxies for
incomplete objects, Nie et al. [2019] train a network to perform
object retrieval using a synthetically generated real image of the
query object. Zhu et al. [2015] train a Siamese Network to perform
3D object retrieval from a depth map, and Avetisyan et al. [2019b]
train a network for simultaneous point cloud cropping and retrieval.
Avetisyan et al. [2019a] present an approach for incomplete object
proxy retrieval that requires every encoded library object to be
compared to every depth scan, which is infeasible with a large
set of objects. Using these methods for broken objects requires
re-training the networks on a dataset containing broken object
models, which limits their adaptability to novel objects. To avoid
including the incomplete object in the training phase, Wang et
al. [2014] encode local features in a conditional random field and
embed geometric structures into a regression tree field. Iwabuchi
et al. [2018] construct a voxel representation from local features,
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Figure 2: Overview of our approach. (a) Given the 3D model of a query broken object as input, our approach generates (b) mul-
tiple 2D renders and (c) a point cloud representation (with normals) for the object, (d) using neural network-based encoders
to extract learned (e) visual and (f) geometric features, matches the features to those extracted from (g) a library of complete
objects, and (h) retrieves the complete object model with the closest match. We use the complete object model to generate (i) a
repair part for the broken object using the automated restoration approach of Lamb et al. [2019].

and use a 3D CNN to encode incomplete objects. Aono et al. [2020]
partition complete object point clouds and encode them into a
library. Uy et al. [2020] train an encoder on sets of similar objects
such extracted features are invariant to deformation. Qi et al. [2016]
train 3D CNNs on complete object voxels and test their method on
incomplete depth scans. Similar to work on retrieval for complete
objects, these approaches encode the object’s entire information
into a single feature vector. If applied to broken object models
they are likely to encode the fracture region and generate feature
vectors that are dissimilar from the complete object. We address
match discrepancy due to the fracture region by using a learned
visual encoder based on VGG16 [Simonyan and Zisserman 2014] to
encode multiple renders of the object independently, and selecting
the best matching view as per the distance between visual features.
Since the best matching view may lack geometric information for
high accuracy, we incorporate matches from features extracted
using geometric encoders [Chen et al. 2021; Choy et al. 2019].

2.2 Proxy Retrieval for Broken Objects

Despite its importance in the object repair pipeline, work on broken
object proxy retrieval is limited. To the best of our knowledge, the
only work in this domain is that of Sfikas et al. [2016], who demon-
strate results using the cultural heritage objects from the Hampson
Museum dataset [Payne et al. 2009]. They evaluate broken object
models generated by subjecting the dataset objects to synthetic
fractures. They render cultural heritage objects as panoramic depth
images, extract handcrafted features in the form of SIFT [Lowe
2004] and local depth histograms for randomly selected keypoints
on the image, and encode the features using BoF. Our approach
uses learned feature encoders due to their demonstrated superi-
ority over hand-crafted features [Avetisyan et al. 2019a]. Learned
visual features from 2D renders of the broken query object enable
retrieval of high-quality complete objects even if the query is not
easily identifiable from its geometry due to large fractures. Our
approach outperforms the work of Sfikas et al. in terms of Chamfer
distance, normal consistency, and mean average precision.

2.3 Object Completion

Another approach to obtain a complete object given an incom-
plete or broken object as input is to generate the complete object

directly, without the use of a library. Historically, object comple-
tion algorithms have made use of object symmetry to complete
an object [Gregor et al. 2014; Sipiran 2018]. These approaches re-
quire that the damage to the object is asymmetric, and fail if the
object to be repaired does not exhibit symmetry or if the damage is
great enough that a plane of symmetry cannot be found. Other ap-
proaches use data-driven techniques to generate a complete object
directly from images [Groueix et al. 2018; Mescheder et al. 2019] or
partial depth maps [Dai et al. 2018; Park et al. 2019; Sarmad et al.
2019; Son and Kim 2020]. However, data-driven approaches fail to
generate satisfactory completions for atypical objects, and must
be re-trained entirely using pairs of complete and incomplete or
broken objects, limiting their extensibility to new object classes.
Our approach performs well for atypical broken objects as these
objects are more easily matched to similar library objects, and can
be scaled to arbitrarily many new classes without training.

3 RETRIEVING COMPLETE PROXIES FOR
BROKEN OBJECTS

The goal of our approach is to retrieve a complete proxy object
model from a library of object models that can be used to gener-
ate a restoration part for a broken query object model. Given a
broken query such as the one shown in Figure 2(a), we render the
object model from multiple viewpoints as shown in Figure 2(b),
extract a point cloud with point normals from the model as shown
in Figure 2(c), and encode the renders and point cloud using learned
feature encoders as shown in Figure 2(d) to create visual and geo-
metric features as shown in Figures 2(e) and 2(f). We discuss our
learned visual and geometric feature extraction approach in Sec-
tion 3.1. We use the encoded features to query a library of features
extracted from complete object models, and we extract the closest
object model in the library as shown in Figure 2(h). Section 3.2
discusses our retrieval approach. Figure 2(i) shows a restoration
part generated by applying the approach of Lamb et al. [2019] to the
retrieved proxy object model and the broken query object model.

3.1 Extracting Learned Features

Given a 3D model of a broken object, our approach generates 8
multi-view renders at 640x640 pixel resolution for visual feature
extraction. We uniformly space the multi-view render viewpoints
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Figure 3: (a) Given the original object model, (b) we use the approach of Stutz and Geiger [2020] to waterproof the model. (c)
We randomly position a primitive break object and perform Boolean subtraction to generate (d) the broken model.

around the object to increase the chance of having viewpoints
that observe the object’s intact surface. We orient the viewpoints
35° downwards to represent typical object viewing angles. We
run the VGG16 [Simonyan and Zisserman 2014] neural network
on each multi-view render and extract the features of the second-
to-last layer to create a set of 8 visual feature vectors, one per
multi-view render. We create a point cloud representation of the
object augmented with normals, in order to generate geometric
features. We evaluate two types of geometric features in this work.
For the first type of feature, we run PointNet++ [Qi et al. 2017]
on the object’s point cloud and normals, and extract features at
the second-to-last layer to obtain a global feature descriptor for
the object. For the second feature type, we run the 3D CNN from
Choy et al. [2019] on the point cloud and extract the features at
the last layer to generate a set of local feature vectors. Given the
local vectors, we use BoF to generate a single vector by clustering
the local vectors into a 256 cluster-codebook using k-means, and
binning counts of the local vectors in each cluster into a histogram.
We compute the codebook over a subset of 10% of the objects in the
library. Given a library of complete object models, we repeat these
steps on each complete model to get visual and geometric features.

3.2 Proxy Retrieval Using Learned Features

For each visual feature from the 8 multi-view renders of the query
broken object model, we compute the Ly distance to its K nearest
neighbor visual features in the library where K = 2,048. We obtain
the library object index to which the feature belongs. We perform
nearest neighbor searches using Faiss [Johnson et al. 2019]. The
nearest neighbor feature retrieval provides 8K distances and library
object indices for the visual features of the query. To eliminate
repeated library object indices, we retain all unique object indices
in the set 7,. We store the smallest distance for each unique object
index in the tuple-set I;,,, with each tuple containing a library
index from 7, and the corresponding smallest distance. For each
geometric feature from the point cloud of the object, we obtain K
nearest neighbor geometric features from the library. We record
the nearest neighbor distance and library object index for each
geometric feature. The process provides K library object indices
stored in set 7, and K corresponding distances stored in the tuple-
set Z4,4. Each tuple contains a library object index from 7; and the
corresponding distance. Since there is a single geometric feature
per object, each object index is unique for the geometric features.
To combine the visual and geometric feature distances, we extract
common library object indices by obtaining the set 7 = I, N 1.
For each object index i € T, we locate its corresponding tuples in

14, and Z,4. We extract the distances dy; and dg; from the tuples.
We obtain the total match for the library object index i as

di = ady; + (1 - a)dgi, 0

where « is a user-defined parameter used to weight relative the
importance of the visual and geometric features. We return the
library object index with the smallest value of d; over all indices in
T as the closest matching object model to the broken query object.
Our approach also enables returning the top n library objects by
ranking the distances over all indices in J in increasing order, and
returning the n indices with the smallest distances. We evaluate
various values of @ in Section 5 and present results with the value
of a that provides the lowest Chamfer distance.

4 BROKEN AND COMPLETE DATASETS

We use three datasets to evaluate our object retrieval approach—
ShapeNet [Chang et al. 2015], A Large Dataset of Object Scans [Choi
et al. 2016], and the Hampson Museum dataset of cultural heritage
(CH) objects [Payne et al. 2009]. ShapeNet contains object classes
for household objects such as jars, mugs, bowls, pots, and toys, as
well as large objects such as cars, tables, and chairs. The dataset
of Choi et al. [2016] contains scanned models of objects such as
chairs, tables, trashcans, benches, and motorcycles. The scanned
models contain extraneous information such as the ground plane
and walls. We clean each scan by scaling the scan to fit inside a unit
cube, computing a plane corresponding to the ground plane using
random sample consensus [Fischler and Bolles 1981], and using the
ground plane to orient the object upright. To isolate the object, we
retain all points that belong to the largest connected component,
lie above the ground plane, and are contained in a cube of side 0.6
units at the scan centroid. We manually inspect objects, and discard
those that are incorrectly isolated. The CH dataset contains objects
such as clay pots, bowls, and jars. While the object models contain
some damage due to being archaeological items, we subject them to
additional breaks to generate queries, similar to Sfikas et al. [2016].

We require waterproofed object models to generate synthetic
breaks using Boolean subtraction. Given an object model from
each dataset, we use the approach of Stutz and Geiger [2020] to
generate waterproofed models as shown in Figure 3(b). To retain
high-fidelity texture after waterproofing, we iterate through the
vertices in the waterproofed mesh, and transfer the interpolated
texture value at the vertex with the closest aligned normal from
the two nearest neighbor vertices in an unsampled version of the
original mesh. Ensuring that the normals are aligned reduces the
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chance of transferring vertex colors from inverted faces in the non-
waterproofed models. Figure 3(c) demonstrates our approach to
generate a break by subtracting a geometric primitive from the wa-
terproofed object model. We use a synthetically generated convex
geometric primitive cube, icosphere, or a subdivided icosphere to
fracture objects, as we observe that broken objects typically have
concave or shear fractures. For each object, we select a geometric
primitive and randomly translate the vertices of the primitive in the
range [-0.05, 0.05], picked from a uniform distribution. We apply
a random rotation and translation to the object and subdivide the
surface of the object to a max edge length of 0.025. To simulate the
complexity of real fractures, we randomly translate the vertices of
the subdivided primitive in the range [-0.00125, 0.00125], picked
from a uniform distribution. We subtract the primitive from the
object using Boolean subtraction. If a break removes more than 50%
or less than 30% of an object, the primitive is moved or regenerated
a maximum of 15 times before the object is discarded. We discard
any models that are not waterproof after being synthetically broken.
The fracture surface is colored uniformly white. Figure 3(d) shows
the broken object model generated as output.

We use waterproofed complete and broken models from the
three datasets to conduct four sets of experiments. Our first ex-
periment tests retrieval success when a replica of the query object
is present in the library. The experiment uses a complete objects
library subset of ShapeNet objects with 28,832 models, and a broken
objects query subset of 5,552 models that are present in the library
subset. Our second, third, and fourth experiments test retrieval
success when an exact replica of the query object is not present in
the library. For the second experiment, the broken objects query
subset remains the same, i.e., 5,552 models from ShapeNet, how-
ever, the complete objects library subset now contains 28,832-5,552
or 23,280 models that are mutually exclusive of the query subset.
For the third experiment, we use the 94 scanned objects from the
dataset of Choi et al. [2016] as the query subset, and we compare
the query against the original subset of 28,832 ShapeNet models
as the complete objects library. The fourth experiment compares
a subset of 25 CH models as query against a mutually exclusive
library subset of 97 CH models.

5 RESULTS

To evaluate the performance of the approaches tested in this work
we use (a) the Chamfer distance as defined by Park et al. [2019],

(b) the normal consistency as defined by Mescheder et al. [2019], and
(c) the mean Average Precision (mAP) over all query object classes.
Unless otherwise specified, we compute each metric with respect to
the top-1 object retrieved by each approach. For all experiments we
use the VGG16 architecture and weights included in TensorFlow,
with weights obtained through training on ImageNet [Deng et al.
2009]. We use the PointNet++ architecture and weights provided by
Yan [2019] with training performed using ModelNet [Wu et al. 2015].
For the approach of Choy et al. [2019], we use the architecture and
weights provided by Choy and Lee [2019] with training performed
on the 3DMatch dataset [Zeng et al. 2017]. When constructing the
BoF used to aggregate features from Choy et al., we use 10% of
the objects in the library subsets obtained from ShapeNet, and all
the objects in the library subset obtained from the CH dataset. We
test two configurations of our approach, one that combines visual
features using VGG16 with geometric features using PointNet++,
which we refer to as ‘VGG16 + PointNet++’, and one that combines
VGG16 features with geometric features generated by the approach
of Choy et al. [2019], which we refer to as “‘VGG16 + Choy et al’
We determine a by performing a line search in the range [0, 1]
and select the value that returns the smallest Chamfer distance
between each query object and the top ranked library object. We
perform this search on a subset of data containing 10% of the ob-
jects from the second ShapeNet library and query subsets, and find
our model achieves the lowest Chamfer distance at « = 0.64 for
‘VGG16 + PointNet++’ and a = 0.95 for ‘VGG16 + Choy et al’ as
shown in Figure 4. We observe that the value of @ with lowest
Chamfer distance also provides high mAP over all classes in the
ShapeNet query subset. We also demonstrate results from using
VGG16, PointNet++, and Choy et al. independently, which we term
‘VGG16’, ‘PointNet++’, and ‘Choy et al.. We perform testing on a
40-core Intel Xeon server with 2 NVIDIA 3090s.

5.1 Retrieval for ShapeNet Query Objects using
ShapeNet Objects in Library

We show results of our first and second experiments on complete
object retrieval from the ShapeNet library subsets for broken object
models that are present and absent from the library in the second
and third super-columns of Table 1. As shown in the table, we report
the Chamfer distance, the normal consistency, and the mAP. For
both cases, i.e., when the query is present in the library and when
the query is absent from the library, we achieve the best results
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Figure 5: Retrieval where the complete version of the ShapeNet query object is present in the library of ShapeNet object models.
Retrieved complete objects that correspond to the broken query object are marked with an asterisk (*).

Table 1: Chamfer distance, normal consistency, and mAP of each of the encoder combinations, compared to the approach of
Sfikas et al. [2016] and features generated using the approach of Choy et al. [2019] across three scenarios: the query object
is not in the library, the query object is in the library, and the query object is in the scanned object library [Choi et al. 2016].
Low values are optimal for Chamfer distance and high values are optimal for normal consistency and mAP. Chamfer distance

shown has been multiplied by 100.

Query Not in Library Query in Library Scanned Query

Chamfer Consistency mAP | Chamfer Consistency mAP | Chamfer Consistency mAP
Sfikas et al. 7.973 0.287 0.229 7.354 0.345 0.310 16.296 0.019 0.018
Choy et al. 8.014 0.304 0.271 7.629 0.345 0.305 12.801 0.091 0.021
PointNet++ 4.470 0.381 0.484 3.931 0.468 0.566 7.701 0.126 0.482
VGG16 5.144 0.377 0.506 2.779 0.693 0.796 8.314 0.118 0.565
VGG16 + Choy et al. 5.245 0.393 0.503 3.053 0.679 0.750 8.994 0.119 0.239
VGG16 + PointNet++ 4.001 0.427 0.602 2.287 0.721 0.849 7.323 0.127 0.481

when VGG16 is combined with PointNet++, i.e., lowest Chamfer
distance, highest normal consistency, and highest mAP. Figures 5
and 6 provide qualitative results using ‘VGG16 + PointNet++’ for
a variety of ShapeNet objects when the queries are present and
absent from the library. As shown in Figure 5, our approach with
‘VGG16 + PointNet++’ primarily returns the identical object when
the complete object is present in the dataset. In cases where the
object is present but a different object is returned, as in the right-
most column, the objects are still visually and geometrically similar.
As shown in Figure 6, our approach still returns objects with high

visual and geometric similarity when the query is not in the library.
Figure 7 provides a visual comparison of the five approaches evalu-
ated in this work—‘VGG16’, 'PointNet++’, ‘Choy et al’, ‘VGG16 +
PointNet++’, and “VGG16 + Choy et al’—for when the query object
is not present in the library. We find that VGG16 returns matches
that are globally similar from certain viewpoints though it lacks
match specificity for parts of the object, e.g., the legs and the cross-
beam of the table. We find that PointNet++ returns objects with
matching fine geometrical details, e.g., the second table’s legs and
cross-beams or the round surface of the first table, however, its
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Figure 6: Retrieval where the complete version of the ShapeNet query object is absent from the library of ShapeNet objects.
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Figure 7: Retrieval results for each feature configuration us-
ing the first ShapeNet subset, where the query is not present
in the library. ‘VGG16 + PointNet++’ returns objects that are
a strong visual and geometric match to the query object.

details on a larger scale are not represented correctly in the re-
trieved object model, e.g., the base of the first query. Combining
VGG16 and PointNet++ enables addressing matches at coarse and
fine scales. When we analyze the method of Choy et al. [2019] with
local features accumulated using BoF, we find that while it models
smaller details well, its use of BoF eliminates spatial consistency,
causing a reduction in match accuracy at a global scale. Combining
VGG16 and Choy et al. appears to improve results at a global scale,

however, we find that visually, objects retrieved using “VGG16 +
PointNet++" demonstrate a closer match. Our approach outper-
forms the approach of Sfikas et al. [2016] with respect to all metrics,
when the query is present in the library and when the query is
absent from the library, due to our use of learned features and our
incorporation of visual features unlike Sfikas et al. [2016] who only
use geometric features. Figure 8 shows the precision-recall curve
generated by returning the top 1 to top 20 objects from the library
subset, and computing the mean precision and mean recall over
all classes. As shown by the figure, using ‘VGG16 + PointNet++’
shows highest performance, demonstrating that the classes are
most relevant when compared with other methods. As expected,
the performance is higher when the query is present in the library.
Even when performance is lower, as in the case of the query object
not being present in the library, Figure 6 demonstrates that the
results are geometrically similar, enabling them to be usable in
repair. As shown in Figure 9, cars, airplanes, motorbikes, tables, and
chairs show high precision, while helmets, faucets, bags, remotes,
earphones, microphones, and bottles show low or 0 precision. The
negligible precision may be attributed to their generic structure,
which may induce high matches with geometrically similar objects
from a different class.

5.2 Retrieval for Scanned Objects as Query
using ShapeNet Objects in the Library

To analyze the effectiveness of our method in comparing data from
real scans against synthetically created objects, we provide results
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Figure 8: Precision versus recall curves for each of the encoder

combinations, compared to the approach of Sfikas et al. [2016]

and features generated using the approach of Choy et al. [2019]. We compute the mean precision and recall over all classes for
the top 1-20 retrieved objects. Left: query object not present in library. Center: query object present in library. Right: query

object in scanned object library.
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Figure 9: Average precision of each of the encoder combinations, compared to the approach of Sfikas et al. [2016] and features
generated using the approach of Choy et al. [2019] across all classes in the ShapeNet [Chang et al. 2015] dataset.

of the third experiment on complete object retrieval using the query
subset from the Large Dataset of Object Scans [Choi et al. 2016]
and the first ShapeNet library subset containing all 28,832 complete
ShapeNet objects. We show quantitative results in the third super-
column of Table 1, and qualitative results in Figure 10. As shown
in Table 1, our approach using ‘VGG16 + PointNet++" outperforms
the remaining methods in terms of Chamfer distance and normal
consistency, demonstrating that our approach provides geometri-
cally similar object proxies. VGG16 demonstrates a higher mAP
than our approach, indicating that the geometric features from the
scanned objects may not be as successful for class retrieval. This
may be attributed to slight alterations in the geometric structure
during cleaning and waterproofing, when holes left by extraneous
geometry removal are incorrectly filled. Similar to Subsection 5.1,
our approach outperforms Sfikas et al. [2016]. Figure 8 demon-
strates a similar trend as Table 1, i.e., that VGG16 shows a higher
performance than ‘VGG16 + PointNet++ in terms of class retrieval.
The left of Figure 12 provides a breakdown of precision in terms of
classes. We find that including geometric features does not perform

as well as using VGG16 alone for trash bins and sofas, likely due
to the lack of fine geometric detail. Including geometric features
improves performance for motorbikes and chairs, exceeding VGG16
for motorbikes. This may be attributed to the success of geometric
features in modeling the fine detail of motorbikes.

5.3 Retrieval of Cultural Heritage Objects

We show quantitative results for the fourth experiment on proxy
retrieval using objects from the Hampson Museum dataset [Payne
et al. 2009] in Table 2. In this case, query objects are absent from the
library. Table 2 provides Chamfer distance and normal consistency.
We do not show mAP as the Hampson Museum dataset lacks class
labels. As shown in Figure 11, our approach consistently returns
relevant CH objects and performs comparably to the approach of
Sfikas et al. [2016] and features generated by the approach of Choy
et al. [2019]. In terms of geometric similarity between the query
objects and proxy results, our method produces results that are
competitive with those of Sfikas et al. [2016] and Choy et al. [2019],
shown in Table 2.
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Figure 10: Retrieval for objects from the scanned object dataset [Choi et al. 2016] with ShapeNet object models as the library.

Table 2: Chamfer distance, normal consistency, and mAP of each encoder combinations, compared to the approach of Sfikas
et al. [2016] and features generated using the approach of Choy et al. [2019] for the CH library. Low values are optimal for
Chamfer distance and high values are optimal for normal consistency. Chamfer distance shown has been multiplied by 100.

Sfikas et al. Choyetal. PointNet++ VGG16 VGG16 + Choy VGG16 + PointNet++
Chamfer 6.970 4.280 5.018 3.730 4.049 3.996
Consistency 0.223 0.389 0.259 0.342 0.331 0.334

5.4 Object Repair

To demonstrate the usability of our approach for object repair, we
use two synthetically fractured objects from ShapeNet as queries
and retrieve the closest matching library ShapeNet object model
when the queries are not present in the library, as shown on the
right of Figure 12. We use the returned ShapeNet object model to
perform repair by using the automated restoration approach of
Lamb et al. [2019]. While the retrieved object model is not a perfect
replica of the query object, as shown by the restorations generated
in Figure 12, the retrieval is able to generate plausible restorations.

5.5 Statistical Testing

We perform a two-sided paired Student’s ¢-test to determine if the
Chamfer distances, per class mAP, and normal consistency of our
approach (‘VGG16 + PointNet++’) are significantly different than
the approaches of Sfikas et al. [2016], Choy et al. [2019], ‘Point-
Net++’, ‘VGG16’, and ‘VGG16 + Choy et al’. We use the Student’s
t-test when the query is not in the library, when the query is in the

library, and when the query is a scanned object. Since we have less
than 30 CH objects we use a two-sided paired Wilcoxon signed-rank
test instead of the two-sided paired Student’s t-test. We exclude a
statistical significance test for mAP for the scanned query object
as we have less than 10 classes. We apply a Bonferroni correction
and reject the null hypothesis if p < 0.01. We state the null and
alternate hypotheses as follows:

Null: There is no difference in the [metric] value between our
approach and [comparative] approach.

Alternate: The [metric] value obtained by our approach is not
equal to [comparative] approach.

Above, [metric] refers to Chamfer distance, normal consistency,
and mAP, and [comparitive] refers to one of Sfikas et al. [2016],
Choy et al. [2019], ‘PointNet++’, ‘VGG16’, or ‘VGG16 + Choy et al.
For Chamfer distance our approach is superior if we obtain a lower
value. For mAP and normal consistency our approach is superior if
our value is greater.

We summarize the results of our statistical tests in Tables 3, 4, 5,
and 6. As shown in Table 3, using ‘VGG16 + PointNet++" when
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Figure 11: Retrieval results using query broken object models and the library scanned object models from the CH dataset.
Query objects are not present in the library. While all object models demonstrate a degree of damage, the query models are
subjected to further breaks using the object breaking method discussed in Section 4.
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Figure 12: Left: Average precision of each encoder combination, compared to the approach of Sfikas et al. [2016] and features
generated using the approach of Choy et al. [2019] across all classes in the scanned objects dataset. The precision for bicycles is
zero as bicycles are not present in our ShapeNet subset. Right: Examples of broken objects, proxies retrieved using our method,
and repair performed using Lamb et al. [2019], provided in the top-left, bottom-left, and right respectively for each object.

the query is not in the library outperforms all other approaches
with differences being statistically significant, except in the case
of mAP for VGG16. However, our overall mAP score is higher as
shown in Table 1. As shown in Table 4 using ‘VGG16 + PointNet++’
outperforms all other approaches when the query object is in the
library, with differences being statistically significant. As shown in
Table 5, using ‘VGG16 + PointNet++" we obtain a lower Chamfer
distance that is statistically significant when compared to all other
approaches except for PointNet++. However, our Chamfer distance

score is lower when compared to PointNet++ as shown in Table 1.
The consistency score with ‘VGG16 + PointNet++ is statistically
different from Sfikas et al. [2016]. The score is not statistically
different from the other methods, likely since normal consistency
is more successful at capturing high frequency differences, while
the scanned models, being bulbous, demonstrate higher mid-level
smoothness. As shown in Table 6 using ‘VGG16 + PointNet++’
we obtain a lower Chamfer distance that is statistically significant
when compared to Sfikas et al. [2016]. This reflects the observation
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Table 3: When the query object is not in the library, our approach provides statistically significant lower Chamfer distance,
higher normal consistency, and higher mean average precision when compared to other approaches. An italicized value indi-
cates a difference that is not statistically significant, however, our average mAP score is higher.

VGG16 Choyetal.  Sfikasetal. = VGG16 + Choy etal. PointNet++
Chamfer p <2.20E-16 p <2.20E-16 p <2.20E-16 p <2.20E-16 p <2.20E-16
Consistency p <2.20E-16 p <2.20E-16 p <2.20E-16 p <2.20E-16 p <2.20E-16
mAP p=002615 p=201E-09 p=412E-11 p =0.004626 p = 7.87E-05

Table 4: When the query object is in the library, our approach provides statistically significant lower Chamfer distance, higher
normal consistency, and higher mean average precision when compared to other approaches.

VGG16 Choy etal.  Sfikasetal. VGG16 + Choy etal. PointNet++
Chamfer p<2.20E-16 p<2.20E-16 p <2.20E-16 p <2.20E-16 p <2.20E-16
Consistency p =3.46E-08 p <2.20E-16 p <2.20E-16 p =1.91E-14 p <2.20E-16
mAP p=0.008492 p=196E-15 p<2.20E-16 p =0.000386 p = 8.09E-10

Table 5: For scanned query objects, we show a statistically significant lower Chamfer distance when compared to all approaches
except for PointNet++. However, as shown in Table 1, our approach retrieves complete proxies with the lowest Chamfer dis-
tance of all approaches. For normal consistency we show a statistically significant higher score when compared to Sfikas et
al. [2016]. However, as shown in Table 1, our approach retrieves complete proxies with the highest normal consistency score
of all approaches. An italicized value indicates a difference that is not statistically significant.

VGG16 Choyetal.  Sfikasetal. VGG16 + Choy etal. PointNet++
Chamfer p=0008734 p=192E-12 p<2.20E-16 p =7.72E-06 p =0.2598
Consistency  p = 0.378 p=001605 p=174E-13 p=0.5599 p=0.9145

Table 6: For CH objects we show a statistically significant difference only in the Chamfer distance compared to Sfikas et

al. [2016].

VGG16

Choy et al.  Sfikas et al.

VGG16 + Choy et al.  PointNet++

Chamfer p=07257 p=04908
Consistency p=0.8127 p=0.432

p=0.000162 p = 0.9368
p =0.03573

p = 0.07548

p=08127 p =0.2708

in Figure 11 that the proxies returned by Sfikas et al. [2016] are
less similar to the broken queries than the proxies returned by our
method. The Chamfer distances and normal consistency scores are
not statistically different for all remaining methods, indicating that
they perform comparably. This may be attributed to the objects
being largely uniform and non-diverse due to which visual and
geometric features are likely to perform well.

5.6 Input Noise

We demonstrate the effect of using low quality 2D renders and vary-
ing degrees of point cloud noise with and without point normals
as input to our approach in Figure 13. Experiments are performed
using the first query and library subsets, i.e. where the query object
models are present in the library. To study the effect of 2D render
resolution on object retrieval, we re-render the query and library
objects from 8 viewpoints over 5 resolutions: 640x640, 320x320,
160x160, 64x64, and 32x32 pixels, and encode these renders using

VGG16. As shown on the left of Figure 13, the precision improves ex-
ponentially with resolution, though the Chamfer distance remains
relatively constant, showing that the quality of 2D renders impacts
the relevance of retrieved proxies but has minimal effect on their
geometric similarity. To study the effect of 3D point cloud noise on
object retrieval, we apply zero-mean Gaussian noise to the point
clouds with 6 standard deviations—0.0 or no noise, 0.005, 0.0075,
0.01, 0.025, and 0.05. We encode each noisy point cloud using Point-
Net++. When normals are encoded the Chamfer distance increases
and the precision decreases rapidly as noise increases, as shown in
the center of Figure 13. When normals are not encoded the Chamfer
distance increases rapidly and the precision decreases slowly as
noise increases, as shown on the right of Figure 13. When point
cloud noise is 0, our approach shows lower Chamfer distance and
higher average precision with normals than without normals. The
decay of Chamfer distance and precision due to point cloud noise
indicate that our approach returns geometrically suitable proxies if
the models have normals and are scanned with high fidelity, but
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Figure 13: Chamfer distance and precision of ‘VGG16 + PointNet++ on noisy inputs. Left: Chamfer distance and precision over
varying 2D square resolutions. Center: Chamfer distance and precision over varying amount of Gaussian noise, with point
normals. Right: Chamfer distance and precision over varying amount of Gaussian noise, without point normals. Gaussian
noise applied to the point clouds is given by the standard deviation 0. Chamfer distance shown has been multiplied by 100.

Query: Basket

Retrieved Proxy: Bathtub

Figure 14: Scale of query and returned proxy may differ.

is negatively impacted by point cloud noise and impacted more
negatively by point normal noise.

6 DISCUSSION

In this paper, we introduce a novel method to incorporate textural
information and learned visual and geometric shape features us-
ing pre-trained neural networks in order to query a library with
a broken object model and find a corresponding complete proxy
model. We have demonstrated that our method provides reason-
able complete proxy models for broken object queries even if the
corresponding complete object is not present in the library. Our
approach is able to robustly return a relevant set of complete object
models in the case of inadequate visual or geometric data, such
as missing or additional fracture geometry. Our method requires
no training and consequently does not require any broken object
training sets or time to train. The use of pre-trained networks in
our work enables it to be adaptable to diverse datasets while still
yielding reasonable complete proxy matches. Our approach forms
an important component of the repair pipeline by automating the
process of proxy retrieval. The object repair results we demonstrate
in Figure 12 leverage complete proxies that are dissimilar from the
original object with convincing results even without mesh deforma-
tion. The joint seamlessness is likely to degrade if the proxy model
deviates significantly from the query object. However, the 3D mod-
els returned by our approach can be combined with deformation
techniques [Botsch and Sorkine 2007; Sorkine et al. 2004] to align
the object closely to the query for fully automated seamless repair.
Complete automation of the repair pipeline enables restoration of
discontinued, unique, handmade, personalized, and CH objects for
which it is difficult or impossible to find a replacement.

6.1 Limitations

6.1.1 Misclassification Due to Scale Invariance. A key limitation
of our approach is that it disregards object scale, as all models in
the ShapeNet dataset are normalized with respect to a unit cube.
As a result our system may return object models in the library that
belong to the incorrect class even though they appear visually and
geometrically similar to the query object model. For instance, our
method returns a bathtub for the broken basket in Figure 14. While a
characteristic of all retrieval methods that lack scale-awareness, the
returned object may still be used to perform repair if the generated
repair part does not cause the repaired object to deviate significantly
from its original intended functionality. In the event that scale
awareness is desired, our work can be extended to build in scale
awareness by pairing it with a recognition step that automatically
identifies the scale of the broken object model, and narrows the
search to library objects that are within a certain scale range. While
ShapeNet models are normalized, the models contain dimensional
data that can be leveraged to perform scale-based searches.

6.1.2  Lack of Consensus Between Visual and Geometric Features.
Another limitation is that if 7 = 0, the visual and geometric features
do not reach a consensus on what library object best represents
the query. While rare, this may occur if the dataset contains many
objects that may be similar to the query so that the consistent
closest matches in visual and geometric space are not found in the
top returned features. The problem may be mitigated by increasing
the number of returned features.

6.1.3  Repair Infeasability. Our approach suffers from the limita-
tions of database-driven repair algorithms, which can only repair
broken objects that have suitable complete proxies in the database.
Though our approach is able to generate high quality repairs such
as those shown in Figure 12 for many common household objects
that have generic geometry, such as vases, cups, and bowls, our
approach is ill-suited to repair objects that are unique, such as stat-
ues or busts. Our approach may fail to return suitable complete
proxies for object classes that require precise tolerances or geomet-
ric symmetry, such as gears and mechanical parts, unless an exact
complete copy of the object exists in the database. However, our
approach can be adapted to work with precise mechanical parts
by deforming the retrieved proxy to the input broken model using
existing deformation techniques [Botsch and Sorkine 2007; Sorkine
et al. 2004] and enforcing constraints of symmetry and planarity.
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6.2 Future Work

While our approach plays a key role in enabling repair automation,
there remains a substantial scope for research in enabling full end-
to-end automation of the repair pipeline. For objects where an entire
part is missing, future work can investigate performing retrieval by
leveraging parts annotations in datasets such as ShapeNet [Chang
etal. 2015] and PartNet [Mo et al. 2019] to provide proxy restoration
parts. Parts-based searches can also be used for locating parts on
an object that require fixing, and performing retrieval for the parts
rather than the entire object. This may improve fidelity of retrieval
and repair by eliminating complex intact regions of the object that
may hinder search, e.g., if the top of a swivel chair is broken, the
complex geometry of the chair wheels need not be included in the
search. At the output end, complete repair automation requires au-
tomatic identification of the material type needed to fix the object,
in order to preserve internal and surface material properties and
end-use functionality. Future work should investigate performing
identification of the material composition by incorporating visual
material sample databases into the retrieval process. Future work
may also apply methods in proxy-based repair to modular 3D print-
ing in order to repair large objects in remote locations where repair
parts may not be immediately available.

While our approach leverages appearance and shape-based fea-
tures to perform retrieval, our work is readily extensible to perform
matching based on semantic information in the form of manually
provided descriptions. Future work can investigate methods to fa-
cilitate user-directed repair by prompting the user for an input and
tailoring the repair according to the user’s preferences. At the input
end, automation requires rapid strategies to scan 3D models of bro-
ken objects that overcome the limitations of traditional scanners,
which includes users having to repeatedly re-position objects to
model the base or hollow interiors of the object, a task that can
prove arduous to the average user and hazardous for fragile or sharp
objects. As part of future work, we are interested in exploring the
use of depth cameras on robotic manipulators to perform full-range
scanning of objects without requiring re-positioning of the object.
We are also interested in investigating the use of multiple robotic
manipulators to automatically perform repair-related tasks such as
joint-bond application and join strength in order to enable a full
end-to-end automation of the repair pipeline.
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